Resilience-Based Design & Risk Management using FEMA P-58

FEMA P-58 and SP3 Software for Resilient Seismic Design

Curt B. Haselton, PhD, PE
Professor of Civil Engineering @ CSU, Chico
Co-Founder @ Seismic Performance Prediction Program (SP3)
www.hbrisk.com
What is “Resilience-Based Design”?

Code Design (ASCE7, etc.)
- Safety Goal – Yes
- Not focused on repair cost/time, so designing *disposable buildings*.

“Performance-Based Design” (AB 083, ASCE 41, etc.)
- Safety Goal – Yes
- Can consider other goals, but typically not done in current practice.
- Enhanced modeling and design scrutiny

“Resilience-Based Design“ (or “PBD Generation 2”)
- Safety Goal – Yes
- Repair Time Goal – Yes
- Repair Cost Goal – Yes
- Also enhanced modeling and design scrutiny
FEMA P-58 Enables Resilience-Based Design

- FEMA P-58 is a probabilistic performance assessment method (10+ years in the making, $12M+ invested, development ongoing)

- FEMA P-58 is tailored for building-specific analysis (in contrast to most risk assessment methods)

- FEMA P-58 output results:
 1) Repair costs
 2) Repair time
 3) Safety: Fatalities & injuries
FEMA P-58 Modeling Approach

Ground Motion Hazard

Structural Response

Economic Loss
Casualties
Repair Time
Component Damage
FEMA P-58 Benefits

- **Comprehensive and credible:** $12M, 10 years to develop, team of 100+ really smart researchers and practitioners

- **Transparent and open-source:** FEMA P-58 is open to the public.

- **Building-specific:** The analysis incorporates the specific nuances of the building, rather than being based on building class.

- **Standardized and repeatable:** Consistent FEMA P-58 damage and repair cost databases are used consistently for all analyses (created based on 20+ years of research).
What can I now do with FEMA P-58?

Applications:
- New design ("resilience-based" design)
- Retrofit
- Risk evaluations for mortgage (PML) and insurance
- Risk evaluations for specialized buildings
- Building ratings

Contrasting Methods:
- Code design (safety-only and prescriptive), performance-based design (typically also safety-only)
- ASCE 41 (mostly safety-only, except for if using IO)
- Experience and judgement-based approaches, which do not handle much building-specific information (e.g. Hazus, ATC-13, ST-Risk, SeismicCat, etc.).
- [same as above]
- Ratings are new; can use FEMA P-58 methods or checklist-based
What can I now do with FEMA P-58?

New Design: Municipal Center (not named)

Figure Source: SOM/NYASE 2016 SEAOC presentation
What can I now do with FEMA P-58?

New Design: Municipal Center (not named)

Project Team

- **SOM**
 - Structural Engineer of Record
 - M. Sarkisian, E. Long & A. Krebs

- **Nabihi Youssef Associates Structural Engineers**
 - Structural Engineer of Record
 - N. Youssef, O. Hata & S. Stewart

- **ARUP**
 - Peer Review
 - Ihbi Almuffi

- **Haselton Baker Risk Group**
 - Business Continuity Consultant
 - C. Haselton

Figure Source: SOM/NYASE 2016 SEAOC presentation
New Design: Municipal Center (not named)

Design Objectives (for design earthquake):
• Safe (few or no injuries)
• Minimal repair cost (>5%)
• Minimal reoccupancy time (>1 week)
• Minimal functionality time (>1 month)

REDi: ~Gold Performance
USRC: 4-5 Star Performance
Assessments for Innovating Structural Systems

What can I now do with FEMA P-58?

Figures: http://cenews.com/userfiles/image/SE1111_44.jpg
What can I now do with FEMA P-58?

Assessments for Innovating Structural Systems

What can I now do with FEMA P-58?

Assessments for Innovating Structural Systems

Figures: http://img.archiexpo.com/images_ae/photo-g/55901-3675379.jpg
What can I now do with FEMA P-58?

Assessments for Innovating Structural Systems

![Bar chart showing structural repair costs](chart.png)

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Repair Cost (MIL $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBE</td>
<td>$10 M</td>
</tr>
<tr>
<td>MCE</td>
<td>$49 M</td>
</tr>
<tr>
<td></td>
<td>$3.4 M</td>
</tr>
<tr>
<td></td>
<td>$0.7 M</td>
</tr>
</tbody>
</table>

- CIP System

© HB Risk Group
FEMA P-58 Modeling Approach

Ground Motion Hazard

Structural Response

Economic Loss

Casualties

Repair Time

Component Damage

EQ: 11122, Sa_{comp}(T=1sec): 1.02g

Deierlein, Haselton, Liel (Stanford University)
Step 1: Define ground motion hazard curve (with soil type)

- Option #1: SP3 can provide (given an address)
- Option #2: User-specified
Step 2: Predict “engineering demand parameters”

- Story drift ratio at each story
- Peak floor acceleration at each floor
- For wall buildings, also wall rotations and coupling beam rotations

Option #1: Response-history structural analysis

Option #2: Statistically calibrated predictive equations

Option #3: Modal analysis (soon)

EQ: 11122, $S_a^{\text{comp}}(T=1\text{sec})$: 1.02g
Deierlein, Haselton, Liel (Stanford University)
Step 3: Quantify component damage

First, establish what components are in the building. Types and quantities of can be specified or estimated from building size and occupancy type.
Step 3: Quantify component damage

We end up with a list of component types, quantities and locations.

Structural Components

<table>
<thead>
<tr>
<th>ACTION</th>
<th>FRAGILITY ID</th>
<th>FRAGILITY NAME</th>
<th>FRAGILITY QUANTITY</th>
<th>FRAGILITY LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand</td>
<td>B1049.022a</td>
<td>RC Slab Column Connection</td>
<td>16</td>
<td>All stories</td>
</tr>
<tr>
<td>Expand</td>
<td>B1041.082a</td>
<td>Non-conforming MF, Conc Col & Bm</td>
<td>4</td>
<td>All stories</td>
</tr>
<tr>
<td>Expand</td>
<td>B1041.082b</td>
<td>Non-conforming MF, Conc Col & Bm</td>
<td>8</td>
<td>All stories</td>
</tr>
<tr>
<td>Expand</td>
<td>B1041.082a</td>
<td>Non-conforming MF, Conc Col & Bm</td>
<td>4</td>
<td>All stories</td>
</tr>
<tr>
<td>Expand</td>
<td>B1041.082b</td>
<td>Non-conforming MF, Conc Col & Bm</td>
<td>8</td>
<td>All stories</td>
</tr>
</tbody>
</table>

Non-structural Components

<table>
<thead>
<tr>
<th>ACTION</th>
<th>FRAGILITY ID</th>
<th>FRAGILITY NAME</th>
<th>FRAGILITY QUANTITY</th>
<th>FRAGILITY LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expand</td>
<td>B2022.002</td>
<td>Curtain Walls</td>
<td>38.567</td>
<td>All stories</td>
</tr>
<tr>
<td>Expand</td>
<td>B2022.002</td>
<td>Curtain Walls</td>
<td>38.567</td>
<td>All stories</td>
</tr>
<tr>
<td>Expand</td>
<td>C1011.001a</td>
<td>Wall Partition, Metal Stud</td>
<td>4</td>
<td>All stories</td>
</tr>
</tbody>
</table>
Step 3: Quantify component damage

Each component type has a “fragility function” that specifies the probability that a structural demand causes damage.
Step 4: Quantify consequences of the component damage (component repair costs, repair times, etc.).

<table>
<thead>
<tr>
<th>Cost per 100 ft.</th>
<th>Labor per 100 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cracked wallboard</td>
<td>$2,730</td>
</tr>
<tr>
<td>Crushed gypsum wall</td>
<td>$5,190</td>
</tr>
<tr>
<td>Buckled studs</td>
<td>$31,100</td>
</tr>
</tbody>
</table>

These are median values—each also has uncertainty.

Fragility functions have been calibrated for hundreds of components from test data, and repair cost and labor has been developed by cost estimators.
Step 5: Aggregate to building-level consequences

Repair costs are the sum of component repair costs (considering volume efficiencies)

<table>
<thead>
<tr>
<th>Component</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows</td>
<td>$26,892</td>
</tr>
<tr>
<td>Partitions</td>
<td>$43,964</td>
</tr>
<tr>
<td>Piping</td>
<td>$5,456</td>
</tr>
<tr>
<td>Structural Components</td>
<td>$77,920</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Sum = $253,968

Recovery time is aggregated from component damage, but is more complex (mobilization, staffing, construction sequencing, ...)

© HB Risk Group
Step 1: Site Hazard
- Soil and hazard curve
- Ground motions (if needed)

Step 2: Structural Responses
- Option #1: Structural analysis
- Option #2: Predictive equations

Step 3: Damage Prediction
- Contents
- Fragility curves

Step 4: Loss Estimation (repair cost, repair time, etc.)

Step 5: Aggregate to building-level consequences
Thousands of Monte Carlo simulations
The simulations provide detailed statistical information on building performance
FEMA P-58: Summary of Steps

- **Step 1: Site Hazard**
 - Soil and hazard curve
 - Ground motions (if needed)

- **Step 2: Structural Responses**
 - Option #1: Structural analysis
 - Option #2: Predictive equations

- **Step 3: Damage Prediction**
 - Contents
 - Fragility curves

- **Step 4: Loss Estimation** (repair cost, repair time, etc.)

Typical Reactions:

Looks extremely complicated!!!

Great method, but it’s a Cadillac and I would only use it for special projects!!!
- **Step 1: Site Hazard**
 - Soil and hazard curve
 - Ground motions (if needed)

- **Step 2: Structural Responses**
 - Option #1: Structural analysis
 - Option #2: Predictive equations

- **Step 3: Damage Prediction**
 - Contents
 - Fragility curves

- **Step 4: Loss Estimation** (repair cost, repair time, etc.)

SP3 implements the FEMA P-58 method, plus a number of other features.
Enabling SP3 Commercial Software

- **Step 1: Site Hazard**
 - Soil and hazard curve
 - Ground motions (if needed)

- **Step 2: Structural Responses**
 - Option #1: Structural analysis
 - Option #2: Predictive equations

- **Step 3: Damage Prediction**
 - Contents
 - Fragility curves

- **Step 4: Loss Estimation (repair cost, repair time, etc.)**

 USGS Soil and ground motion database information embedded

 Statistically calibrated structural response methods embedded

 Full FEMA P-58 fragility database embedded, building contents are auto-populated (with FEMA P-58 methods and enhanced options)

 Two-level structure:
 1) Use pre-populated values (Goal: Analysis in hours rather than weeks).
 2) Modify inputs to dig deeper

 Structure: Cloud-based computational platform, flexible reporting options
Why Does SP3 Exist?

- **The Goal:** Enable widespread and mainstream use of FEMA P-58 for building-specific risk assessment.

- **The Intended Outcome:** We believe that this better understanding of risk will (a) facilitate design of more resilient buildings and (b) enable better decision-making for both mortgage risk and insurance risk.

- **The Strategy:** Provide a software that enables these assessments at a rapid pace, so feasible for nearly all projects (taking hours not weeks).
Quick Resilience-Based Design Example

- Project: Municipal office building
- Building: Design a 10-story RC Wall (coupled core), office occupancy
- Site: LA high-seismic
- Design Objectives: USRC five-star performance in all categories
 - Repair Cost < 5%
 - Functional Recovery Time < 5 days
 - Safety – high (low collapse, no/few injuries, good egress)
- Showing example for design, but also applicable to assessment.

Figure Source: SOM/NYASE 2016 SEAOC presentation
Quick Resilience-Based Design Example

Approach: Iterative design using FEMA P-58.

Step #1: Start with code-compliant design to see where that gets us...

- Repair Cost = 8% [4-star]
- Recovery Time = 6.5 months [3-star]
 - 3.0 months – mechanical and electrical (HVAC, lighting, switchgear)
 - 2.0 months – structural
 - 1.5 months – other non-structural (e.g. partitions, stairs, piping, fire sprinklers)
- Safety [3-star]
 (not discussed here)
Step #2: Design wall to be “essentially elastic” (very strong) and remove coupling beams (so no structural damage at design level).

Figure Source: SOM/NYASE 2016 SEAOC presentation

Staggered Shear Wall Openings to avoid Link Beams
Step #3: Design mechanical and electrical components to be functional at the 10% in 50 year (anchorage, equipment, lighting, etc.).

- Result for Steps #2-3:
 - Repair Cost = 5.5% [still 4-star]
 - Recovery Time = 2.5 months [still 3-star]
 - 1.0 month – slab-column connections
 - 1.5 months – partition walls
Step #4: Reduce the shear on the slab-column connections.
Step #5: Use less damageable partition walls.

• Result:
 – Repair Cost = 3.5% [now a 5-star]
 – Recovery Time = 6 weeks [still a 3-star]
 • 3 weeks – slab-column connections
 • 3 weeks – partition walls
Step #6: Stiffen the building (longer walls, more coupling, etc.). Reduces the maximum drifts from around 1.4% to 1.0%.

- Result:
 - Repair Cost = 2% [5-star]
 - Recovery Time = 0 days [moved from 3-star to 5-star]

Step #7: Now that building has less drift, move back to higher shear slab-column connections.

- Result:
 - Repair Cost = Still 2% [still a 5-star]
 - Recovery Time = Still 0 days [still a 5-star]
Step #8: Now that building has less drift, see if we can move back more damageable partition walls.

- **Result:**
 - Repair Cost = 2.5% [5-star]
 - Recovery Time = 2 weeks [would moved down to 4-star]

Move back to less damageable partition walls to keep a 5-star recovery time.
Quick Resilience-Based Design Example

• Final Design Outcomes:
 – **Repair Cost:** 2% [5-star] *(Typically 10-20% for new code)*
 – **Recovery Time:** 0 days [5-star] *(Typically 6-9mo. for new code)*
 – **Safety:** Low fatality + injury risk and good egress [5-star]

• This example was for **new design**, but FEMA P-58 offers this same level of building-specific detail when doing performance assessments as well.
Two Options:

- Direct design based on a FEMA P-58 risk assessment
- Prescriptive design, as calibrated based on FEMA P-58 assessments
Requirements for a Resilient Design

There are several levels of resilient design, and the exact design requirements will depend on the level of resilience desired, but the primary needs to make a building be seismically resilient are as follows:

- Essentially no structural damage (i.e. no red tag and no damage that will inhibit building functionality).
- Residual drifts low enough to not cause red tag and not require repair.
- Peak drifts low enough to prevent damage to non-structural drift sensitive components that would inhibit building functionality.
- Peak floor accelerations low enough to prevent damage to acceleration sensitive components (that would inhibit building functionality), or the anchorages and the equipment being specifically designed to remain functional under the imposed floor accelerations.
Table 1 - Example performance targets for building resilience

<table>
<thead>
<tr>
<th>Level of Resilience</th>
<th>Maximum Damage (% value)</th>
<th>Maximum Recovery Time</th>
<th>Safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>5%</td>
<td>5 days</td>
<td>Safe</td>
</tr>
<tr>
<td>Gold</td>
<td>10%</td>
<td>4 weeks</td>
<td>Safe</td>
</tr>
<tr>
<td>Silver</td>
<td>20%</td>
<td>6 months</td>
<td>Safe</td>
</tr>
<tr>
<td>Bronze</td>
<td>40%</td>
<td>1 year</td>
<td>Safe</td>
</tr>
</tbody>
</table>
Table 2 - Example of Resilient Design Process using FEMA P-58

<table>
<thead>
<tr>
<th>ID</th>
<th>Design Changes</th>
<th>Mean Loss at 10% in 50yr</th>
<th>Mean Loss at 2% in 50yr</th>
<th>Median REDI Functional Recovery at 10% in 50yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>11251</td>
<td>Baseline</td>
<td>17%</td>
<td>43%</td>
<td>37 days</td>
</tr>
<tr>
<td>11253</td>
<td>Self-Centering Frame (No Residual Drift)</td>
<td>11%</td>
<td>27%</td>
<td>32 days</td>
</tr>
<tr>
<td>11254</td>
<td>Cladding Detailed for No Damage</td>
<td>7%</td>
<td>17%</td>
<td>29 days</td>
</tr>
<tr>
<td>11255</td>
<td>Slab-Column Connections Detailed for No Damage</td>
<td>4%</td>
<td>11%</td>
<td>27 days</td>
</tr>
<tr>
<td>11256</td>
<td>Lateral Frame Connections Detailed for No Damage</td>
<td>2%</td>
<td>5%</td>
<td>27 days</td>
</tr>
<tr>
<td>11257</td>
<td>Elevators Detailed for No Damage</td>
<td>2%</td>
<td>5%</td>
<td>4 days</td>
</tr>
</tbody>
</table>

Figure 1 - Example Results from a Resilient Design Process using FEMA P-58
Figure 2 - Effects of Increased Design Strength ($I_e > 1.0$)
Figure 3 - Effects of Reducing Drift Limits
Figure 4 - Effects Risk Category IV Requirements
REQUIREMENTS FOR A RESILIENT DESIGN

There are several levels of resilient design, and the exact design requirements will depend on the level of resilience desired, but the primary needs to make a building be seismically resilient are as follows:

- Essentially no structural damage (i.e. no red tag and no damage that will inhibit building functionality).
- Residual drifts low enough to not cause red tag and not require repair.
- Peak drifts low enough to prevent damage to non-structural drift sensitive components that would inhibit building functionality.
- Peak floor accelerations low enough to prevent damage to acceleration sensitive components (that would inhibit building functionality), or the anchorages and the equipment being specifically designed to remain functional under the imposed floor accelerations.

Table 6 - Example Prescriptive Requirements for Resilient Design

<table>
<thead>
<tr>
<th>Level of Resilience</th>
<th>Drift Limit</th>
<th>Maximum R Factor</th>
<th>Maximum Rp Factor</th>
<th>Risk Category for Nonstructural</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platinum</td>
<td>0.75%</td>
<td>3.5</td>
<td>1.5</td>
<td>IV</td>
</tr>
<tr>
<td>Gold</td>
<td>1.25%</td>
<td>5.5</td>
<td>4.0</td>
<td>IV</td>
</tr>
<tr>
<td>Silver</td>
<td>2.0%</td>
<td>8.5</td>
<td>9.0</td>
<td>III</td>
</tr>
<tr>
<td>Bronze</td>
<td>2.5%</td>
<td>8.5</td>
<td>12.0</td>
<td>II</td>
</tr>
</tbody>
</table>
The FEMA P-58 method and SP3 software are complete and ready for use.

FEMA P-58 method and SP3 are being used increasingly in our structural engineering industry for:

- New resilient design
- Retrofit projects
- PML and more advanced risk assessment

We are also continuing further SP3 development:

- Make the methods cover all structural systems and conditions (already covers nearly all of them). Nearly done with wood light-frame and then tilt-up is next.
- Streamline the analysis methods to make the analysis quicker (structural response prediction methods).
What are we going to do about this?

- **Cost:** Recent resilience-based design projects have estimated that resilient seismic performance **costed between 0-5%** of the project budget.

- **Performance Results:**
 - Repair cost of ~2% rather than ~10-20%.
 - Repair time of nearly zero rather than ~6-24 months.
 - **With these methods, we can design buildings that are not disposable.**

The Question for Us All:

With these resilience-based design methods now available, and with costs being reasonable, why wouldn’t we do resilience-based design for all new buildings?
Questions and Discussion

- Thank you for your time.
- Our goal is to support adoption of resilience-based design and risk assessment, and we welcome feedback and suggestions.

- Time for questions and discussion!

Curt Haselton: curt@hbrisk.com, (530) 514-8980
Jack Baker: jack@hbrisk.com

www.hbrisk.com